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Abstract

In this report, several open problems in current enterprise
Security Information and Event Management systems,
specifically with respect to their event correlation are dis-
cussed. An advanced event correlation using a special
kind of soft pattern matching in conjunction with onto-
logical background knowledge, Description Logic infer-
ence and a probabilistic post processing by Conditional
Random Fields is proposed to address these problems. It
is shown that this approach improves the detection accu-
racy by detecting even unknown incidents in contrast to
currently applied rule-based correlations.

1 Introduction

The cyber criminal threat against the IT infrastructure is
a well-known and steadily growing problem for many
organizations. As a consequence, organizations need
to protect their business-critical resources appropriately.
One essential component of a comprehensive security
management is to monitor the IT infrastructure at dif-
ferent levels, such as the operating system, network, and
applications.

A single product, such as a firewall or an Intrusion
Detection System (IDS) cannot be assumed to recog-
nize all kinds of IT incidents [3, p.665]. Therefore,
large organizations, e.g., car manufacturers or financial
institutes, have deployed Security Information and Event
Management (SIEM) systems [46]. These systems man-
age security-related events generated by different sources
like IDSs, firewalls, system health monitors, antivirus
programs, and database logs. The process of combin-
ing the events generated by these sources with back-
ground knowledge, such as IT infrastructure knowledge
or known vulnerabilities for the purpose of detecting in-
cidents, is called event correlation in the SIEM domain.

From the intrusion detection perspective, two incident
detection methods are conceivable, i.e. anomaly detec-
tion [19, 35, 38, 52] where each deviating system be-
havior of a previously trained normal behavior is sug-
gested to be an incident or a misuse or rule-based method
[36, 30, 49, 55, 22] which detects incidents by correlating
the input events with previously specified patterns.

SIEM systems like the market-leading product Arc-
Sight [4, 46] or the Symantec Security Information Man-
ager [56] typically use predefined rules to correlate the
events. While some products like NitroSecurity SIEM
[47], AlientVault Unified SIEM [2], RSA enVision [16]
or the Q1 Labs correlation (used by Enterasys, Juniper
and Nortel) are making use of integrated anomaly detec-
tion methods (such as detecting baseline deviations), the
final decision making is almost rule based.

The application of a rule-based final decision making

in these products is understandable due to the require-
ment of processing huge amounts of events and the prob-
lems inherent to anomaly detection such as an increased
false positive rate and the absence of an interpretation of
the detected incident [20]. However, the focus on rule-
based methods leads to possibly unrecognized incidents
due to a lack in the rule set.

In detail, we have identified the following problems in
current SIEM correlation processes which we address by
the approach presented in this report:

Actuality Problem One problem of detecting inci-
dents by predefined patterns—as normally done in SIEM
systems—is to detect incident variations. These varia-
tions cannot be discovered by convenient rule-based de-
tection methods if the rules to detect these variations are
unknown. Therefore, the need of actuality of the rule
databases rises to detect actual incidents.

A similar problem arises from the actuality of back-
ground knowledge. For example, the IT assets in enter-
prises steadily change. Therefore, these changes must be
recognized and the corresponding asset database must be
kept up-to-date to guarantee correct background knowl-
edge to enable a correct correlation.

Balance Problem The most important problem for the
SIEM correlation and incident detection is called the bal-
ance problem. This problem describes that an incident
detection approach must find an adequate balance be-
tween the false positive (also called type-I error) rate and
the false negative (also called type-II error) rate. There is
the difficult objective to maximize information security
by analyzing all suspicious evidences on the one hand
and to minimize the need of computational and human
resources for this analysis on the other hand. Therefore,
finding a good balance is essential for a successful ap-
plication of a SIEM system. Even a small change in the
false positive rate may have a drastic influence on the
amount of generated incidents due to the high rate of pro-
cessed events as discussed by Axelsson as the base-rate
fallacy problem [5].

Dependency Problem Events from different sources
and over different points in time may be highly depen-
dent. For example, a failed log-in event is more suspi-
cious if several failed log-ins have been detected pre-
viously or a preceding port scan from the same source
address has been recognized. Additionally, log-in at-
tempts may be temporally distributed, e.g., an attacker
may perform only one log-in attempt each day which
is hardly to be separated from regular users mistyp-
ing passwords. Further, there are dependencies to the
background knowledge, such as known vulnerabilities or



servers running specific software. Several of such rela-
tions are conceivable [51]. Therefore, the identification
of the relevant relations—and using them for incident
detection—is very difficult due to their complexity.

Knowledge Acquisition Bottleneck Problem In en-
terprises, Information Security experts are continuously
overloaded or not available at all. Specifically, the se-
curity domain requires lots of experts to gain expertise
in all fields. Expert knowledge is a necessary require-
ment to assess incidents and their security impact [10].
Wagner [62] structured this problem into four subprob-
lems: narrow bandwidth, acquisition latency, knowledge
inaccuracy, and maintenance trap. The narrow band-
width problem describes the problem of missing input
from experts since experts are typically a sparse resource.
The acquisition latency problem describes that it takes
time until knowledge is formalized and shared. In the
SIEM domain, this leads to missing information for the
correlation. The knowledge inaccuracy problem means
that even experts may produce mistakes which may lead
to a misclassification of incidents. Finally, the mainte-
nance trap is the problem of keeping knowledge up-to-
date which is related to the actuality problem as stated
above. These problems lead to the conclusion that back-
ground knowledge must be assumed to be incomplete or
not up-to-date.

Heterogeneity Problem The sources of evidences that
are used for detecting malicious behavior of software or
users are typically heterogeneous in the SIEM domain.
For example, an antivirus program generates different
events than a firewall or system health monitor due to the
different monitoring purposes. There exists no common
accepted standard for the different types of event sources.
The generated events are vendor or even product specific
[43]. Considering the task of correlation, the events from
all these different event sources must be understood in
a common way to be correlated. Due to different detec-
tion methods, the reliability of the sensors is different and
even depends on the incident to detect. These problems
are summarized as heterogeneity problem in this report.

Interpretation Problem After an incident has been
detected, an interpretation needs to be determined which
describes this incident. This is a minor problem of rule-
based correlation engines as used in most SIEM enter-
prise systems since the rules can be considered to be an
adequate interpretation. However, this is a major prob-
lem of anomaly detection methods [20]. These meth-
ods can detect that there is something wrong (e.g., ab-
normal high network traffic), but they have difficulty in
saying what the cause is [65]. This problem is stated here

since it must be considered in the development of new
correlation techniques. Only an adequate interpretation
supports the security operator in determining appropri-
ate countermeasures.

Sparse Data Problem The vast amount of attacks can
be considered as a rich pool of possible reference data.
However, the amount of professional successful attacks
is very sparse [48] since these attacks are either pre-
vented before they have been successful or they have
not been recognized at all. This leads to the problem
that there are not sufficiently annotated reference data to
automatically derive dependencies (cf. the dependency
problem) and to train a Machine Learning model of seri-
ous and successful intrusion attacks or incidents. More-
over, it is difficult to exchange or deploy concrete ex-
amples of incidents for training, e.g., in the form of tcp
dumps, due to reasons of data privacy.

Tracking and Persistency Problem Another problem
is the high amount of data that must be processed by
the detection modules. Specifically, this is a problem of
huge enterprise networks and comes hand in hand with
the need to make these data persistent for later forensic
analysis [34]. Further, the consideration of events from
a long time span may be necessary for correlation, but,
it is also computationally challenging and rises the need
for efficient correlation algorithms.

2 Related Work

Besides the aforementioned rule-based detection as used
in current SIEM approaches, the approach of Fan et al.
[17] for intrusion detection is important due to the poten-
tial for application in a distributed way and its hybrid de-
tection method. In their approach, an artificial anomaly
generator is used to train a classifier to distinguish be-
tween (artificially generated) anomalies, known attacks
and known normal data which partially addresses the
problem of sparsity since unknown but suspicious events
are classified as anomaly. However, it only uses exam-
ples of known attacks and known normal data without a
representation of deep domain-specific expert knowledge
as required in SIEM systems.

The approach of He et al. [28] is a rule-based detection
approach which uses background knowledge represented
in an ontology. This background knowledge is used to
generalize the known rules to detect even variations of
known attacks. Therefore, this approach addresses the
requirement of handling sparsity and is shown to improve
the detection accuracy by example. However, the ap-
proach lacks to validate the modeled expert knowledge



and is limited with respect to detecting unknown inci-
dents since a threshold must be defined which controls
the maximum generalization of the given rules for the
detection.

The Iterative Boolean Combination (IBC) [33] ap-
proach of Khreich et al. learns boolean fusion functions
applied to anomaly intrusion detection. The approach
learns combination rules and underlying Hidden Markov
Models which can represent uncertainty and incomplete-
ness. The expert knowledge of this approach is limited to
the combination rules. Expert knowledge with respect to
IT asset information, relations to vulnerabilities, etc. can-
not be modeled, which violates the requirement of SIEM
systems.

With the approach of Yu et al. [64], it is possible
to model background knowledge of attacks in Colored
Petri-Nets which addresses the requirement of incorpo-
rating expert knowledge. Uncertainty has been addressed
by extending the Petri-Nets by using Hidden States with
trainable probabilities. However, the correlation of the
events is performed by predefined pre- and postcondi-
tions which limits the approach to detect only known at-
tack sequences.

MADAM ID [39] is noteworthy since the system con-
sists of a misuse detection method with learning capa-
bilities. MADAM ID can learn symbolic patterns which
may be edited by security officers which addresses the re-
quirement to model expert knowledge and allows learn-
ing from examples. However, the system cannot handle
or represent incompleteness and uncertainty. Further, it
does not address the requirement to handle sparsity since
it is constrained to use a sufficient amount of reference
data for learning. In 2007, Hwang et al. [29] contin-
ued this work by using the generated misuse patterns of
a similar approach to MADAM ID in the Snort misuse
detector. They could recognize a significant increase in
the detection rate with only a small increase of the false
positive rate. The combination of Snort misuse detection
fed by an anomaly detection engine which mines patterns
has also been proposed in [32]. This system should use
several agents with a Bayesian network model to repre-
sent known attack types as well as normal behavior to
combine anomaly and signature detection.

Gupta et al. [25] proposed to use Conditional Ran-
dom Fields (CRFs) in the domain of intrusion detection.
Their approach uses normal data as well as abnormal
data for training. They investigated—based on the KDD
cup 1999 data set [1]—that their Conditional Random
Field approach outperforms the usage of Decision Trees
and a naive Bayes method. Later, they extended this ap-
proach by multiple layers of Conditional Random Fields
with different features for the detection of different attack
types [26]. However, this approach does not use modeled
background knowledge and requires sufficient reference

data to be trained.

In summary, all these methods contain concepts for
partly addressing the problems stated in the introduction,
however, none of them is covering the full spectrum.

3 Ouwur Approach

The approach of this work is split into a preprocess-
ing part called Tolerant Pattern Matching and a post-
processing part by a Conditional Random Field. The Tol-
erant Pattern Matching (TPM) approach presented here
is a special kind of Soft Pattern Matching. The TPM
term is used to clarify the difference to other Soft Pattern
Matching approaches that do not use ontological rep-
resentations, logical expressions and generalizations of
them in the matchmaking process. The post-processing
part takes the matching values of the TPM as input for
a statistical interpretation of incident hypotheses by the
use of Conditional Random Fields.

We have chosen the TPM approach to fulfill the re-
quirement of handling sparsity and to address the prob-
lem of incomplete background knowledge. TPM is used
to transfer modeled background knowledge to unknown
cases. Additionally, expert knowledge must be acquired
by comprehensible concepts, like modeling logical ex-
pressions as in other SIEM systems. A CRF (as also used
in this approach) cannot directly use or represent logical
expressions. However, logical background knowledge
can be represented and used by the combined approach
of TPM and CRFs as we will see.

Further, the deployment of a correlation process which
requires concrete examples for training—Ilike Machine
Learning models such as a CRF—is a difficult problem
in the area of enterprise applications since the examples
may contain confidential data. However, patterns as used
by TPM abstract from individual examples and, there-
fore, are deployable. This provides an out-of-the-box so-
lution for the correlation by still having the ability to re-
fine the decision making by successively learning from
examples by using a CRF post processing.

Empirical probabilities which are helpful for the de-
cision making process must be derived from examples.
Pattern matching approaches—including Tolerant Pat-
tern Matching—are not capable of representing this. In
the combination with probabilistic models like Condi-
tional Random Fields, these probabilities can be repre-
sented and even be transferred to previously unknown
cases by considering modeled background knowledge
from the TPM. This allows us to adapt the modeled back-
ground knowledge to the application domain by learning
from examples. Using empirical probabilities from the
application domain in combination with TPM refines the
handling of noisy input data by making use of probability



theory by still being able to exploit the given background
knowledge.

Further, the trained CRF can determine which mod-
eled patterns are most significant or insignificant for the
inference with respect to the application domain (for ex-
ample, directly by analyzing the trained weights or by
feature selection as shown in [60]). This supports the re-
vision of the modeled background knowledge and avoids
redundant and useless patterns. Vice versa, the improve-
ment of the pattern set supports the CRF inference. A
synergy effect is given that successively improves the de-
tection model and the modeled background knowledge.

3.1 Tolerant Pattern Matching

In the following, the method of Tolerant Pattern Match-
ing is described which handles variations in the input
data by generalizing patterns according to ontological
background knowledge.

Tolerant Pattern Matching is realized by successively
generalizing the patterns and determining a residual de-
gree of satisfaction with respect to the input data (the ob-
servations a.k.a. the events). A pattern consists of logical
compositions of constraints. Each constraint is expressed
by a relation between two entities in the form entity, re-
lation, entity. For example, the constraint

<observationEntity:SourcelIP>
<relation:hasNetwork>
<individual:internalNetwork>

indicates that the SourcelP value of the observation must
have the network internalNetwork which is as-
sumed to be an individual from the ontology. An entity
is assumed to be a variable in the scope of a pattern, an
individual from the ontology or a place holder for a value
from the observation. Briefly, an individual is a specific
element in the ontology and a concept is a more abstract
element in the ontology building a superset of several in-
dividuals. For further information about ontologies, the
reader might refer to [6].

Each constraint in a pattern can be expressed as a
query triple in a Description Logics query language like
SPARQL [61] to use description logic reasoning in the
ontology by using reasoners like pellet [14].

This allows to easily reason in complex domains and
allows to use variables in the constraints. For example,
the ontology may contain background knowledge about
software, their vulnerabilities and information about the
IT infrastructure. The conjunction of the following two
constraints may be used to check if the target IP of the
event has a specific vulnerability. The first constraint is:

<observationEntity:TargetIP>
<relation:hasSoftware>
<variable:ListOfTargetSoftware>

The second constraint is:

<variable:ListOfTargetSoftware>
<relation:hasVulnerability>
<individual:CVE-2012-2341>}

If this pattern does not match the observation since
the IP does not have a software with this vulnerability,
the TPM abstracts this pattern to determine the residual
degree of matching. Therefore, the second constraint
can be abstracted to a more general case, for exam-
ple, the individual CVE-2012-2341 may be abstracted
to the concept drupalVulnerability which com-
prises of all CVE vulnerabilities that target the drupal
software.

Now, we are looking for a similarity function for the
TPM approach which guarantees that the best matching
pattern (or in this context of CRFs, the best matching fea-
ture) dominates all other less matching patterns during
the inference. This avoids that a huge number of slightly
matching patterns overwhelm a strong (or even perfectly)
matching one. In the following, a measure 8(y/,7¥) for
constraints 7/ and ¥ is assumed to quantify the similar-
ity of an abstracted constraint y from the original level j
to an abstract (or generalized) level k.

¥+ denotes the constraint on the most specific level 1
(where 1 is a positive integer) and 6 (') is the short form

of 8(7,1").



Definition 1 (Similarity function) The similarity func-
tion 0 is defined for the number of abstractions 1 —k of
a constraint Y* with respect to the number of patterns |p|

by: -
6(7") =( 1 ) 1)

|p|

It can be shown that this measurement builds a simi-
larity function according to [18] and [7].

This measurement is assumed to be 1 if the constraint
is not abstracted, and decreases, if the constraint is get-
ting more abstract by always being greater than or equal
to 0. It can be assumed to be a special case of the Sim-
Rank similarity measurement [31].

The similarity function values of the constraints are
combined to a matching degree of the whole pattern by
applying some fusion operator F(6y,...,6,) similar to
fuzzy pattern matching [11]. This is necessary to con-
sider the semantics of the logical operators while ab-
stracting the pattern. Therefore, a fusion approach is
suggested by using the tree of logical operators in each
pattern as follows:

Definition 2 (Fusion Function) The fusion function
F(p) of a pattern p is recursively defined with respect to
some similarity function 0 of constraints Y composed by
logical operators as:

F(iaY) = min(F(4).F(¥))
F(ivy) = max(F(4).F(H))

N 1-F(y"), fori=1
F=1) = {ﬁF(}/), otherwise

6(7),

where 3 €[0,1] is a penalty factor to additionally penal-
ize the abstraction of negations.

=
=
[

B is a design parameter which is dependent on the used
similarity function and the depth of the ontology. Op-
tionally, a small 3 may be chosen without multiplying it
with the similarity function, i.e., the similarity function is
omitted in the case of negation since it directly abstracts
to a tautology.

The reason to choose the min-max fusion of conjunc-
tion and disjunction is to avoid that patterns with a huge
number of disjunctions have a stronger tendency to be
interpreted as true and patterns with a huge number of
conjunctions stronger tend to be false.

The fusion function F' is monotonic with respect to 6.
It builds a partial order of patterns regarding the general-
ity of their containing constraints. From this basis, it is
necessary to find the best matching pattern with respect
to some input data, i.e., the matching pattern with the
biggest F.

For example, if we have a pattern set with two pat-
terns and one pattern is specified to be the conjunction
of one matching constraint and one constraint that must
be abstracted two times to match, the residual degree of
matching of the pattern is calculated for the similarity
value of the first constraint 6; = 1 and the similarity value

of the second abstracted constraint 6, = %2 =0.25 and
the fusion function for the conjunction F = min(6;,6,) =
0.25. Next, the combination of the presented Tolerant
Pattern Matching approach with a post-processing by

Conditional Random Fields is shown.

3.2 Tolerant Pattern Matches as Feature
Function Values for Conditional Ran-
dom Fields

The matches of the Tolerant Pattern Matching process
are used as input features (i.e., the sufficient statistics)
for a Conditional Random Field.

Conditional Random Fields are discriminative proba-
bilistic models which have been suggested by Lafferty
et al. [37] to overcome the label bias problem known
from Maximum Entropy Markov Models [41]. Briefly,
the CRF inference follows the theorem of random fields
[27, 50] as stated by Lafferty. Wallach [63] suggested
a simple notation of the CRF inference by assuming that
the feature functions f; € f which are used to describe the
input data are uniquely parameterized by the sequence of
labels y and the sequence of observations x [63]. Wallach
proposes the following equation for inference (adapted
from [63, p. 4]):

1

Privied) = 7o &P (Z%‘fj(y,x)) ©)
J

This equation relaxes the assumption of Maximum En-
tropy Markov Models by assuming that feature func-
tions may depend on the whole sequence of observations
(i.e., using x instead of x; € x). The model parameters
A ={A... A4y} are determined during training to effi-
ciently infer the posterior distribution Pr(y|x,A) based
on the feature function values f; (the values are deter-
mined by the fusion function F for the arbitrary patterns)
parameterized by the observations (the events) and the
labels (incidents or threats) to infer. Details about Con-
ditional Random Fields can also be obtained from [21, p.
108].

The application of a discriminative model like Condi-
tional Random Fields is used in this approach to be more
robust with respect to the unknown class prior of inci-
dents since before the training of the model by examples
from the application domain, the frequency of incidents
in this domain is unknown. Further, Conditional Ran-



dom Fields have already been successfully applied in the
domain of intrusion detection, e.g. [26].

One feature is built for each combination of labels and
patterns, i.e., f ={f1,...,fn} withn=|y||p|, and |y| being
the number of labels and |p| the number of patterns. Each
feature matches exactly on one label and returns—in the
case that the associated label is queried—the result of
the fusion function of the associated less abstracted but
matching pattern, i.e. the biggest F for this pattern.

The proposed combination of Tolerant Pattern Match-
ing and Conditional Random Fields requires that a higher
degree of matching leads to an increased influence to the
posterior probability of the CRF which can be proven
by the monotonicity of Equation 2. The intuition is that
better matching patterns should stronger account for the
final decision making. Further, the used similarity func-
tion can be shown to ensure that the best matching fea-
ture dominates the sum of all less matching features with
equal (or less) significance (i.e., the assigned weights)
and with a comparable abstraction lattice in the CRF in-
ference. This guarantees that several slightly matching
patterns do not overwhelm a perfectly matching pattern
and avoids a too strong smoothing of the posterior prob-
ability distribution.

3.3 Modeling Incidents - The Incident Ma-
trix

In this report three threat levels are used: A normal
threat (N € t) is assigned to an incident to indicate that
the pattern matches triggering this incident does not
indicate an increased threat. In other words, a normal
threat indicates that the detected incident is a false
positive and indeed is no serious incident.

A suspicious threat (S € ¢) is assigned if the triggering
pattern matches are suspicious but do not indicate a high
threat at this time. This threat level is used to mark
potentially interesting situations which should be kept
for further correlation.

A dangerous threat (D ¢ t) produces the highest prioriti-
zation and is used to indicate dangerous pattern matches.

For modeling incidents, each pattern is assumed
to either match (M), mismatch (-M) or to have an
unspecified (U) value indicating that the matching value
does not affect the decision making.

The modeling of incidents by pattern matches can be
represented as a single two dimensional matrix as visu-
alized for three patterns p1, pa, p3 € p and two incidents
i1,ip €iin Table 1 which we call incident matrix.

For example, the ping incident (i») does not care about
the source IP of the event, therefore, the matching value
to p3 is set to unspecified. p, must match since the ping

pi P2 3 threat level
description port-scan ping source is admin
i) (non admin scan) M -M -M dangerous
ip (ping) -M M U normal

Table 1: Example of an incident matrix that relates pat-
tern matches to incidents and threat levels.

incident requires the ping pattern to match. Further, if
P2 is known to match, p; cannot match since the event
cannot be a ping and a port-scan event at the same time.

3.4 Two Layers of Conditional Random
Fields

After specifying the input for the Conditional Random
Field (i.e., the similarity function, the fusion function and
the pattern matches as feature values), we focus on the
output, i.e., the labels of the CRF or the inference target.
In this work, two disjunct Conditional Random Fields
are used, one for detecting and assessing threats (called
Detection Layer) and one for explaining them (called Ex-
planation Layer):

Detection Layer This layer has three labels represent-
ing three threat levels a) dangerous, b) suspicious and c)
normal according to the threats specified in the incident
matrix. All patterns are used as input which results in
maximally 3|p| feature functions (and weights) for the
CREF of this layer if all threat levels are used. The Detec-
tion Layer is used to detect incidents out of the stream of
events by determining the threat level. Further, this layer
is essential for prioritizing incidents as we will see.
Explanation Layer This layer has one label for each
modeled incident and is used for already detected inci-
dents to explain the arbitrary steps belonging to the inci-
dent. The Explanation Layer may only be used in suc-
cession of a high prioritized incident from the detection
layer and, therefore, may not affect the computational ef-
ficiency of the incident detection. If |i] is the number of
modeled incidents, there are |i||p| feature functions (and
weights) in this layer.

There are two major reasons for splitting the detec-
tion and the explanation layer. The first is obviously a
smaller inference effort for detecting incidents since the
threat layer normally has a lower number of labels (only
three). The second is the inability to derive the threat
level from the explanation layer since the probabilities
of the labels are not independent with respect to the se-
mantically overlapping features.

3.5 Prioritization of Incidents - The Hy-
potheses Pool

Let ¢ be a certain threat level from ¢ and j an index over
the sequence of observations x with each observation x;.



The probability of all observations belonging to a cer-
tain threat level is given by the inference of the Detection
Layer Pr4,; by:

i

Prge(t|x) = HPrder(l|x/) 3)
=1

In this work the following prioritization is used:

Definition 3 Given a sequence of observations x, the
prioritization prio is determined by:

. O.SPrdet(DUS‘x)+0.5Prdet(D|x)
prio(x) =log, Pra(NIX)
Cl

“

The prioritization compares the likelihood that all ob-
servations belong to an incident with dangerous or sus-
picious threat against the likelihood that all observations
belong to an incident with a normal threat. This mea-
surement is similar to the likelihood ratio as often used
in sensor fusion approaches (e.g., [24]). Please note that
a trade-off of false positives and true positives can be
specified by a threshold for this prioritization.

The objective of the correlation process is to determine
a group of incidents which most likely are all dangerous.
Each such group builds a hypothesis in the following,
i.e., each hypothesis comprises of a sequence of events
and incidents. Potentially, each permutation of the inci-
dents may build a hypothesis. For example, a ping event
might lead to a hypothesis with a ping incident, next a
port-scan event generates two new hypotheses, i.e. the
hypothesis with the combination of the ping and port-
scan incident and solely the port-scan incident.

In practice, this is not feasible due to the exponentially
growing inference effort. Therefore, we use a concept we
call Hypotheses Pool which keeps the hypotheses with
the highest priority and drops hypotheses with the lowest
priorities to limit the total number of hypotheses. Fur-
ther, the Hypotheses Pool consists of buckets where each
bucket holds hypotheses with a predefined number of in-
cidents. Each such bucket is individually checked with
respect to a predefined maximum size of the bucket and
the least prioritized hypotheses are dropped from these
buckets. These buckets are required since hypotheses
with more incidents have typically a higher prioritization
than hypotheses with less incidents due to the increased
certainty that at least one of their incidents is dangerous.
The absence of these buckets would avoid the generation
of complete new hypotheses which is at least undesired
in the long term.

Further, the introduction of Hypotheses allows one to
define temporal relations in their scope. Besides the typ-
ical description logical constraints and logical composi-
tions, patterns can describe temporal relations in their

constraints in the scope of a hypothesis. This can be
used to express dependencies over time, e.g., a failed lo-
gin attempt may be considered more suspicious with a
preceding port-scan. Therefore, the three temporal re-
lations currently, previously o(y(x;)) = y(x;j-1) and
once &(y(xj)) =y(x1)Vv...vy(xj-1) can be used in the
constraints of the patterns to express temporal relations.

3.6 Training

The training of the Conditional Random Fields is done
by Improved Iterative Scaling (IIS) [9]. The empirical
probabilities for training are determined by the incident
matrix. The matrix can be filled by modeled knowledge
as well as by concrete examples of attacks which offers
to use modeled expert knowledge as well as experienced
misclassifications during the application of the system.
This offers the ability to train the proposed system dur-
ing application, for example, to consider the individual
network behavior of the application domain.

The modeling of incidents by experts often produces
an artificial imbalance [12] between benign and malign
incidents. This occurs since incidents are modeled with-
out the information about how frequent the incidents oc-
cur. This problem is reduced by learning from examples,
but remains to be a challenge for the first deployment of
the detection engine. Imbalanced Data is a serious prob-
lem for several machine learning approaches [8, 24] and
a known problem in the Intrusion Detection domain, too
[12]. Batista et al. discovered that over-sampling meth-
ods are well-suited for imbalanced datasets [8], there-
fore, this method is also tested in this work.

One problem of CRFs trained with IIS is that they
tend to overfit the data. In the original version of IIS,
the model parameters (the weights A in Equation 2) are
not limited and may even converge to infinitely huge
numbers—which has obviously a high impact on the
posterior distribution. Therefore, regularization is typ-
ically used to overcome this problem, briefly, by tying
the model parameters near to zero. In regularization,
the model parameters themselves are considered as ran-
dom variables with a specified prior distribution. Smith
et al. discovered that regularization priors as Gaussian,
Laplacian or Hyperbolic perform roughly equally well if
they are appropriately parameterized [54]. Chen et al.
agreed with that even while comparing further regular-
ization techniques [13]. They also derived the gradient
for Improved Iterative Scaling with a Gaussian prior used
in this work.

With these methods—IIS, regularization and
oversampling—we are well prepared to train the
CRFs with examples as well as with modeled incidents.



4 Empirical Evaluation

Due to the confidentiality of real data including seri-
ous attacks, only a few security benchmarks are avail-
able [59]. One frequently used benchmarking dataset is
the KDD CUP’99 dataset [1], which consists of connec-
tion records and is well-suited for testing low-level IDSs.
However, this dataset is less appropriate for benchmark-
ing SIEM systems on the higher event level. The KDD
CUP underlying DARPA dataset [40] refers to raw data,
and is, therefore, even less appropriate for testing SIEM
correlation engines. Further, several problems of both
datasets have been investigated [57, 42] which lead to the
decision to use a more up-to-date data set which more ac-
curately fits the level of SIEM event correlation. Hence,
we used the sandnet data set consisting of 1407 recorded
malware samples and their generated Snort events. These
samples are a subset of the generated samples from the
sandnet project [53]. This collection of sample files is
further called the sandnet dataset containing just malign
Snort events. Benign traffic has been recorded in the
Artificial Intelligence workgroup of our institute (TZI)
which is further called “TZI data set”. One month (31
days) of traffic has been analyzed by a Snort IDS with
the same rule set as used in the sandnet malware analy-
sis. The resulting data set has been filtered by just using
static IP addresses of the institute. These 24 static IP ad-
dresses are reserved for staff members to avoid that the
benign dataset becomes contaminated by mobile com-
puters with potential malware infections.

The rule-based pattern matching method as used by
most SIEM systems has been reimplemented for auto-
matic testing to generate statistically significant results.
Further, a naive Bayes and a CRF approach compete
to compare models from the two major fields of prob-
abilistic models, i.e. generative vs. discriminative mod-
els [45]. For the performance analysis of the detection,
we used probabilistic sampling to generalize from a few
samples to the whole population. We have chosen Sim-
ple Random Sampling with replacement due to its accep-
tance for producing a representative evaluation [58, 15]
and due to its simplicity. The test parameters are set to
a level of significance of 0.05 and a tolerable sampling
error of 0.03. Hence, at least 1068 samples are required
to guarantee these test conditions.

Test 1 uses one benign sample (X) and one malign
sample (sandnet) for generating patterns. The gener-
ated patterns avoid to use network specific characteristics
like IP addresses and ports to ensure that the correlation
does not use characteristics from the different networks
from which the samples are recorded. The test evaluates
the approaches against one sample from the combined
dataset of sandnet and TZI which uses two hours of ma-
lign hidden in one day of benign events.

This combination is done by inserting the malign
events into the stream of benign events. Since no spe-
cific network characteristics are used in the evaluation,
this does not bias the test results. Specifically, each test
result is collected by a) the modeling of benign incidents
based on a sample of the TZI dataset b) the modeling
of malign incidents based on a sample from the sand-
net dataset c¢) testing against benign events from the TZI
dataset to measure true negatives and false positives and
d) testing against malign hidden in benign events from
the combined dataset to measure true positives and false
negatives.

In the Receiver Operating Characteristic (ROC) curve
in Fig. 1, we compared 7 test models using the same test
and training data for each model. A varying threshold
over the prioritization function has been used to create
the ROC curve based on 1254 test results. The test inves-
tigates the following seven models: 1) The naive Bayes
model NB,,, using a rule-based approach with pattern
matching that does not use abstractions (PM)—indicated
by the index pm 2) NB;,,, the same model as in model
number one, but with using tolerant pattern matching in-
stead of rule-based hard pattern matching (indicated by
tpm). 3) NB;pm a=0.1, the same naive Bayes model 2, but
with using Laplace Smoothing with o = 0.1, i.e., adding
10% to the samples to smooth the distribution to avoid a
so-called wipe-out in the naive Bayes model which might
occur by training with a low number of training sam-
ples. 4) The CRF,,;, 5-1 model using PM and a Gaussian
Prior with 0 = 1. 5) CRF,, 5=1, as number four but us-
ing TPM instead of PM. 6) CRF,,; -5, the same CRF
model as number five, but with a different parameter for
the Gaussian Prior, i.e., 6 =5. 7) STRICT, a method
only using PM without any probabilistic post-processing.
This method performs similar to most enterprise SIEM
systems. This has been verified in several tests using an
instance of ArcSight ESM 5 which performed equally to
STRICT as expected.

Fig. 1 shows that both naive Bayes and CRFs bene-
fit from using TPM. Specifically, model five and six—
using CRFs and TPM—significantly perform better than
the STRICT method and the naive Bayes models. In
the area around the false positive rate 0.25, the gap be-
tween model five and six to the other models is quite
large. This can be explained by the threshold used to
generate the samples for the ROC curve. If the threshold
deviates from zero, the influence of the TPM is fading
since partially matching patterns from TPM are produc-
ing less sharp probability distributions (to express their
uncertainty) which results in prioritization values near to
zero. This conjecture is underpinned in Table 2 showing
the false positive rate for a prioritization threshold—to
treat a hypothesis as serious incident—of zero.

As we see, this threshold leads to a false positive rate



no. model tp fp | prec. | rec. | acc. | F1

NB 82| 42| 66 | 82| 7 | .73

NB: pm 86| 37| 7 | 86| .75 | .77
NBipma-i | 87 | 37| 7 | 87| .75 | .78
CRFuoo1 | 79 | 227 78 | 79 | 79 | 79
CRF,pmo-1 | -95 | 22| .81 | .95 | .87 | .88
CRF,ppoos | 94 | .22 | .81 | .94 | 86 | .87

STRICT | .79 | 22| 78 | .79 | 779 | .79

NN R W -

Table 2: Test results of test one with a prioritization
threshold of zero.
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Figure 1: ROC curve of Test 1; parameters are Laplace
smoothing &, oversampling factor os, and Gaussian Prior
c.

of 22% and a true positive rate of over 90%. Model
five has a 16% higher true positive detection rate than
the STRICT method by keeping the false positive rate of
22%. Further, we see that the CRF performs slightly bet-
ter with a Gaussian Prior of ¢ = 1.0 than with 6 =5.0. For
lower false positive rates, Fig. 1 shows that smaller ¢ val-
ues often lead to an improved detection. TPM improves
the detection accuracy for CRFs and for naive Bayes.
CRFs with TPM perform better than all the other tested
methods. However, we show that a post-processing by
naive Bayes performs poorly with the given test param-
eters, even worse than using conventional pattern match-
ing (PM) alone. This surprising result is investigated in
the next test. Please note that the results are given for a
SIEM level of detection, i.e., they are relative to the un-
derlying events produced by the sensors, e.g., an IDS. In
this case, based on the underlying Snort sensor.

Test 2 investigates the poor performance of the naive
Bayes models from Test 1 in detail by analyzing the
detection performance with different training parame-
ters. Therefore, the smoothing factor o of the Laplace
smoothing has been varied. The result of this test with
1086 samples is visualized in Fig. 2. As we see, the vary-
ing parameters do mostly not lead to significant changes
in the detection accuracy. Only the change of the over-
sampling factor os to a ratio of two times more benign
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Figure 2: ROC curve of test 2 comparing different naive
Bayes parameterizations with activated oversampling in
model 6.

samples than malign samples in model 6 significantly im-
proves the detection accuracy. Even in comparison with
an oversampling factor of 1 (model 2 and 3 in Fig. 1), an
oversampling factor of 2 leads to a significant improve-
ment (model 6 in Fig. 2). The explanation of this behav-
ior is due to the nature of generative models to strongly
depend on the prior of the distribution to infer. In this
case the ratio between benign and malign incident threats
which is specified by the oversampling factor or (in case
of disabling oversampling) by the ratio in the modeled
data highly affects the detection accuracy. Since the
threat ratio in the modeled data does not reflect the real
empirical frequency of benign and malign incident oc-
currences, naive Bayes models are highly dependent on
a correct oversampling factor. Since the oversampling
for naive Bayes models is critical to tune, a model which
is more robust to this parameter is desirable.

Test 3 evaluates 1151 samples with respect to differ-
ent parameters to test the robustness of the CRFs with
respect to the oversampling (os) and the regularization
prior (o). Fig. 3 shows that all CRF inferences (model
2-6) do not vary significantly according to varying pa-
rameters. This is a great advantage of the CRF model
in comparison to the naive Bayes approach. Only the
CRF inference without oversampling (model 2) performs
slightly worse than the other CRF models using oversam-
pling. Another interesting derivation is that naive Bayes
with a strong oversampling (os = 3) outperforms the CRF
at a false positive rate near 0.27. However, naive Bayes
slower increases the true positive rate near to STRICT
at a false positive rate of 0.18. We see that naive Bayes
with TPM, an oversampling factor of 3, and a Laplace
smoothing of 1 is also a reasonable probabilistic model
in comparison with the CRF models for this dataset and
test setup.

Test 4 evaluates 1077 samples. Each sample consists
of modeling two benign and two malign incidents. In
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Figure 3: ROC curve of test 3 with varying parameters
for CRF, naive Bayes, and STRICT.

test tp fp prec. | rec. | F measure
1 0.79 | 0.22 | 0.78 | 0.79 0.79
2 0.77 | 0.16 | 0.83 | 0.77 0.8
3 0.79 | 0.18 | 0.81 | 0.79 0.8
4 1091|034 | 073 | 091 0.81

Table 3: Performance of the STRICT method for all test
setups.
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Figure 4: ROC curve of test 4 with two malign and two
benign samples trained.

contrast to the previous tests, this one evaluates how the
models behave when the trained modeled data are less
sparse. Therefore, instead of one benign and one ma-
lign training sample two benign and two malign samples
are used. As expected, the detection rate of STRICT in-
creases — as can be obtained from Table 3 for all four
test setups — since more events are known to be malign.
However, the false positive rate increases significantly,
too.

As can be seen in Figure 4, approaches using TPM are
not significantly varying with respect to the last test; their
learning has already converged and, therefore, this un-
derlines that the models are more appropriately handling
sparse data.
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In comparison with STRICT, CRF/TPM can still bet-
ter discriminate malign and benign incidents.

The aim of test 5 which uses 1244 samples is to dis-
cover the influence of the reference data in combination
with the modeled knowledge. This test has been per-
formed with the same simulation data sets and a similar
setup as the tests before. For each test, one sample from
the TZI data set and one sample from the sandnet data
set have been used to model incidents. Beyond this, two
events from randomly chosen TZI samples have been
used as reference data for benign incidents. All associa-
tions to further incidents are assumed to be unknown to
make the scenario as realistic as possible since an expert
cannot be assumed to necessarily assign all matching and
mismatching incidents for an observation. Accordingly,
two events from randomly chosen sandnet samples have
been used as reference data for training malign incidents.

On average, 60.12 malign events have been sent to the
correlation engine for each sandnet sample and 20, 17 be-
nign events have been sent for each TZI sample. Please
remember that the events are generated by Snort which
explains the low amount of benign events. The corre-
lation engine has been trained with 3 modeled patterns
belonging to malign incidents and 3.23 modeled patterns
belonging to benign incidents on average.

One interesting behavior of the naive Bayes models
in this test is the increased false positive rate of the
NB;pmos=2,a=1 model with respect to the model with a
lower oversampling factor NB;py 5=1,4=1 as to obtain
from Figure 5. One might expect that by increasing the
normal to dangerous oversampling rate (os) the false pos-
itive rate should decrease. However, this is not guaran-
teed in general. The process of oversampling is a random
process, which might lead to different inference results,
specifically in cases with a small number of training data.
Further, by the use of reference data the risk emerges that
ambiguous patterns are used for the oversampling. For
example, a previously modeled harmless incident for one
pattern might be extended by a new malign incident —
from the reference data — indicating a malign incident
for the same pattern. During the oversampling process,
this pattern might be selected for oversampling both, ma-
lign and benign incidents that might confuse the model
for observations matching to this pattern. Additionally,
in cases where the benign-to-malign rate is already fit-
ting to the oversampling factor and, therefore, no over-
sampling is necessary, the absence of the oversampling
can lead to an increased uncertainty due to a model with
a smaller number of oversampled training data. This ef-
fect might become even worse while applying Laplace
smoothing.

Therefore, there are several reasons why the uncer-
tainty of the models might increase for changes in the
oversampling factor. This increased uncertainty is re-



flected by a smaller distance between the prioritiza-
tions of the malign and benign hypotheses. For ex-
ample, one sample from this test has been assessed
by the NB;pp 0s=2,0=1 model to have a prioritization of
prio = 1,72 for the malign test data and a prioritization of
prio =0, 16 for the benign test data. The same model for a
smaller oversampling factor, i.e. NB;py,05=1,a=1, has pri-
oritized these hypotheses as prio=1,76 and prio=-0,01.
This small shift in the discriminative power of the model
has already generated a false positive detection for a pri-
oritization threshold of zero.

While further increasing the oversampling factor, e.g.,
in the model NB;  05=3,a=1, these side-effects are getting
more and more redeemed by the strong class prior of the
naive Bayes model that suppresses the detection of false
positives and coincidently the true positives. This shows
again, that the independence of the oversampling factor
should be preferred.

As to obtain from the ROC curve of Figure 5, the CRF
performance is similar, but shifted with respect to the re-
sults from test one (see Figure 1). For example, the true
positive rate for the false positive rate 0.2 in test one for
the CRF}pp 05=1,6-1 model is near to 0.8, whereas for the
same false positive rate the true positive rate for the same
model in test five is near to 0.87. However, with a shifted
false positive rate to 0.25 the true positive rate in test one
straightly increases to around 0.95 and in test five the
true positive rate is still near to 0.87. This lower value
can also be explained by the additional reference data
that may confuse the model due to ambiguous pattern
matches.

Further, the comparison of the ROC curves from test
one and five shows that the CRF model does not signif-
icantly benefit from the additional reference data. One
reason is that the reference data only confirm the mod-
eled knowledge. In other words, if the modeled knowl-
edge is already sufficiently representing the domain, the
additional reference data are not needed. Additionally,
if the modeled knowledge more appropriately describes
the domain than the few reference data, the incorporation
of reference data may even lead to a lower discriminative
power of the model, specifically if several matching val-
ues are set to unknown like in this test.

In contrast, the naive Bayes model NB;py o5=2,a=1 Of
this test performs worse than the same model from test
two. For example, the true positive rate in test five for
a false positive rate of 0.3 is near to 0.85, whereas the
true positive rate of the same model in test two is at 0.95.
However, the other naive Bayes models—NB; py 05=1,a=1
and NB;py os=3,a=1—are performing very well with the
use of the additional reference data in this test. They even
outperform the CRF models for some false positive rates,
such as 0.3. They are, however, strongly dependent on
the oversampling factor and are less rapidly increasing
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Figure 5: ROC curve of test 5 with different models
that are trained by modeled dangerous and benign inci-
dents each from one sample file with additionally two
randomly chosen dangerous and benign concrete obser-
vations.

the true positive rate for a false positive rate near to 0.21.
In comparison with test four, these naive Bayes models
perform better in this test without the additional patterns
from test four. The CRF models have nearly the same
false positive to true positive ratio in test four and test
five, i.e., the use of the additional reference data in test
five compensates the missing modeled patterns from test
four.

The exact true positive and false positive rates as well
as the precision, recall, accuracy and F1 score can be
obtained from Table 4 for a prioritization threshold of
zero. The approaches with the lowest false positive rates
are the STRICT method and the NB;py 5=3,4=1 Naive
Bayes model. However, both have a low true positive
rate and, therefore, cannot be recommended to detect
incidents. The highest true positive rate is given by
the NB;pu,0s=1,a=1 naive Bayes model, however, with
a high false positive rate, too. The CRF models have
nearly the same false positive rate as the best models, i.e.,
NB;pmos=3,a=1 and STRICT, but a significantly higher
true positive rate. Further, they are independent of the
oversampling factor for this threshold. The F'1 measure
is equal for the best naive Bayes model and all the CRF
models. The naive Bayes models are performing very
well and even can potentially outperform the CRF mod-
els for some false positive rates if they are properly pa-
rameterized. However, the parametrization is not trivial
and can be avoided by using Conditional Random Fields
while keeping the F1 score. Therefore, this test shows
again that the CRF models should be preferred with re-
spect to naive Bayes models in most cases, but also that
naive Bayes models are competitive.



model tp fp precision | recall accuracy F1

NBipm.os=1,0=1 0.95 0.3 0.76 0.95 0.83 0.84
NB;pm,os=2,0=1 0.89 | 0.37 0.71 0.89 0.76 0.79
NBipm,os=3,a=1 0.78 0.2 0.8 0.78 0.79 0.79
CRF; pi.os=1,0=1 0.87 | 0.21 0.81 0.87 0.83 0.84
CRF; pi.os=2,0=1 0.87 | 0.21 0.81 0.87 0.83 0.84
CRF; pin.05=3,0=1 0.87 | 0.21 0.81 0.87 0.83 0.84

STRICT 0.78 0.2 0.8 0.78 0.79 0.79

Table 4: The performance measures for a prioritization
threshold of zero for the models in test five.

5 Computational Complexity

It can be shown that the TPM finds the best match of a
pattern (the smallest generalization) in O(nlg(zd_l)) De-
scription Logic reasoner calls with n being the depth of
the abstraction lattice (in the maximum the depth of the
ontology) and d being the number of dimensions to find a
solution, i.e. the number of constraints that share a com-
mon variable in a pattern. Further, a CRF is known to
take O(|f]) with |f] being the number of feature func-
tions, i.e. in the case of incident detection |f] < 3|p|.
Therefore, the TPM of small dimensions and the CRF
inference is very efficient. The Hypotheses Pool needs
to extend and check each contained hypothesis. Us-
ing the Hypotheses Pool has the great advantage that it
makes the system difficult to evade since an attacker may
hardly predict which hypotheses are currently in the pool
and which may become extended to build a dangerous
or most suspicious hypotheses (especially for long term
correlations). However, using the Hypotheses Pool can
be computationally expensive if the CRF/TPM inference
is complex.

4500

4000

3500
3000
2500
2000
1500
g

update ime in ms

1000

5

3

PN P RN RGP DR @

0||
N QO A o DN
@ E PS8

sample

Figure 6: One example from the runtime performance
test for a case with eight patterns, 64 feature functions
for the Explanation Layer and 16 feature functions for
the Detection Layer.

On average, the correlation takes 403,57 ms with a
standard deviation of 1110.97 for each sample. This high
value is explained by the use of the immediate genera-
tion of explanations, i.e., in the current implementation
the explanations (from the explanation layer CRF) are
always generated for new hypotheses instead of only on
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demand of the user. The consequence can be seen in
Figure 6. At the beginning of each test, the Hypothe-
ses Pool is empty, therefore, each new observation will
create a set of new hypotheses. For all these new hy-
potheses, explanations are calculated and presented to
the user. Therefore, the correlation engine requires more
computational power in the beginning of the test since
at this time the highest number of explanations must be
calculated. Later, only a few observations are incom-
ing that result in new hypotheses that are not dropped
by the Hypotheses Pool due to their priority assessment.
The generation of new hypotheses is reflected by peeks
in Figure 6. For example, at sample 21 and sample 50
a comprehensive extension of the hypotheses can be rec-
ognized, whether, at sample 114 a smaller number of ex-
tended hypotheses can be seen.
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Figure 7: The average values of the runtime performance
measurements.

Figure 7 shows the average update time in ms for all
13372 performance measurements with respect to the
number of patterns and the number of hypotheses in the
Hypotheses Pool. As to obtain from this figure, the peeks
correlate with the initial development of the number of
hypotheses in the Hypotheses Pool. The Hypotheses
Pool expands by the series 2" — 1 without considering the
reduction step (i.e., dropping hypotheses from the Hy-
potheses Pool). Therefore, one would expect peeks at 1,
3,7, 15 and 31 hypotheses since for the given Hypothe-
ses Pool size (five buckets with size ten) these steps are
without any required reduction, i.e. a maximum expan-
sion. In all other cases, the Hypotheses Pool dropped
some hypotheses due to the reduction step which de-
creases the inference effort. While further hypotheses
are generated, the Hypotheses Pool is guaranteed to drop
some of the hypotheses since the capacity of at least
some hypotheses buckets has been reached. This is the
reason why the maximum inference effort is recognized
for 31 hypotheses in the Hypotheses Pool which is the
maximum extension of the number of hypotheses in the
Hypotheses Pool that is possible. Further, it is interesting



that the number of patterns do not increase the inference
effort significantly.

In our current implementation we were able to pro-
cess between 15 and 20 events per second (see Figure 6)
for an Hypotheses Pool with size 50 — if the Hypotheses
Pool has been filled — on an Opteron Processor 275 with
2,2 GHz. We explain this by not using parallelizations,
for example each inference might be performed in paral-
lel, and the absence of code optimization. For example,
we build a query string in SPARQL to query a Descrip-
tion Logic reasoner for each pattern check instead of us-
ing the direct API of the pellet reasoner. However, it is
clear that the presented approach cannot compete with
respect to the computational efficiency to current enter-
prise SIEM correlations. Therefore, we propose to use
this approach as an add-on to existing correlations.

6 Conclusion

Since current SIEM correlation engines can process huge
amounts of events, we propose to use such systems as a
basis to process all known events in advance. Known be-
nign events may be filtered out and known suspicious or
dangerous events and unknown events may be forwarded
to the proposed method of TPM/CRF for an advanced
correlation and assessment. Further, the TPM/CRF ap-
proach may be used to revisit the forensic offline data
to adapt the current pattern / rule set of the underlying
SIEM system. SIEM systems like ArcSight ESM already
use a taxonomy of event categorization which makes the
integration of TPM reasonable.

The approach presented in this report addresses the
initially mentioned problems by the following proper-
ties: The actuality problem is addressed by the com-
bination of TPM and CRF. The TPM offers to abstract
the modeled patterns to assess even unknown cases by
the use of a similarity measurement which also addresses
the knowledge acquisition bottleneck problem. The
CRF has the potential to analyze the patterns with re-
spect to their significance in the decision making to re-
move or revisit obsolete patterns. Further, the CRF can
learn from examples and incorporate this into the de-
cision making to keep the decision making up-to-date.
The evaluation has shown that the false positive rate can
be kept low while increasing the detection rate. There-
fore, the balance of true to false positives could be im-
proved to current SIEM correlations which addresses
the balance problem. The dependency problem has
been considered while using TPM which offers a com-
prehensible way for security experts to model complex
dependencies among the events. The use of an ontol-
ogy and a Description Logic reasoning provides the op-
tion to model even complex dependencies to background
knowledge such as IT infrastructure information. The
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heterogeneity problem has been addresses by using the
IDMEF [44] to provide a common syntax normalization
and an ontology has been used for mapping the hetero-
geneous events to a common semantic for all sensors.
This is a pragmatic solution and there are already ad-
vanced approaches to aggregate the events from several
sensors, for example in the research field of sensor fu-
sion [23]. However, this pragmatic approach does not
require any training data and is also used in current en-
terprise SIEM systems. The drawback of this approach
is that the outcomes of the sensors must be known in ad-
vance to provide a semantic normalization. In case of
the Snort IDS, which is used in this work, we used a
small program that parses the detection rule set of Snort
to generate the set of all possible outcomes and assigns
these outcomes to the most similar elements (concepts)
in the ontology. The interpretation problem has been
addressed by mapping the incoming events to named in-
cidents. In case of detected unknown incidents, the most
similar and most likely incidents are determined by the
combined TPM/CRF approach to give the security offi-
cer the best explanations for the incident as possible. The
sparse data problem has been addressed by the use of
TPM which offers to deploy the system with predefined
rules and abstracting these rules for incoming events that
cannot be classified by the modeled rule set. A proba-
bilistic discriminative classifier (CRF) has been chosen
to be most robust with respect to the absence of concrete
domain information, specifically the ratio of incidents to
normal events. The drawback of CRFs to typically re-
quire more training data than their generative counter-
parts like Bayes models is compensated by the use of
the pattern matches from TPM as input features. The
tracking and persistency problem has been addressed
by the Hypotheses Pool which offers long term correla-
tions by keeping the most promising hypotheses for cor-
relation until other more promising hypotheses require
the reduction of the Hypotheses Pool. One might think
that an attacker might easily evade this system by flood-
ing the Hypotheses Pool with lots of suspicious events.
However, several suspicious events/incidents would lead
to an increased prioritization and the security officer will
at least be warned. Further, it is difficult for an attacker
to know how the events are prioritized since this depends
on the modeled rules, the ontology and the probabilistic
model which has learned from the application domain.
Beyond this, the events are stored into a database for fur-
ther offline analysis.

In summary, all stated problems have been success-
fully addressed by the proposed approach. However, it
requires additional computational power which avoids to
use this correlation technique as a self-contained solu-
tion. Therefore, we propose to use this approach as an
add-on in current SIEM systems.
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